令 \(a\in A,b\in B\) 则移动向量 \(\omega\) 使得存在 \(b+\omega=a\)
那么 \(\omega\) 需要满足 \(\omega=a−b\)黑科技:闵可夫斯基和 直接构造闵可夫斯基和 \(C={a+(−b)}\) 余下问题便是判断输入的移动向量是否在 \(C\) 内 可以强行使凸包的最下面为 \((0,0)\),这样只要找到与坐标轴夹角最接近的边就好了# includeusing namespace std;typedef long long ll;const int maxn(2e5 + 5);const double eps(1e-13);const double pi(acos(-1));const double inf(1e15);struct Point2D { double x, y; inline Point2D(double _x = 0, double _y = 0) { x = _x, y = _y; } inline Point2D operator +(Point2D ad) const { return Point2D(x + ad.x, y + ad.y); } inline Point2D operator -(Point2D ad) const { return Point2D(x - ad.x, y - ad.y); } inline double operator ^(Point2D ad) const { //dot return x * ad.x + y * ad.y; } inline double operator *(Point2D ad) const { //cross return x * ad.y - y * ad.x; } inline Point2D operator *(double ad) const { return Point2D(x * ad, y * ad); } inline double Len() { return sqrt(x * x + y * y); } inline double Angle() { return atan2(y, x); }};struct Segment2D { Point2D x, y; inline Segment2D(Point2D _x = Point2D(0, 0), Point2D _y = Point2D(0, 0)) { x = _x, y = _y; }};inline Point2D CrossPoint2D(Segment2D a, Segment2D b) { double k1, k2, t; k1 = (b.y - a.x) * (a.y - a.x); k2 = (a.y - a.x) * (b.x - a.x); t = k2 / (k1 + k2); return b.x + (b.y - b.x) * t;}Point2D tmp[maxn];inline int Cmp(Point2D x, Point2D y) { return (x - tmp[1]) * (y - tmp[1]) > 0;}inline void Graham(Point2D *a, int &len) { int l = 0, mn = 0, i; for (i = 1; i <= len; ++i) if (!mn || (a[i].x < a[mn].x || (a[i].x == a[mn].x && a[i].y < a[mn].y))) mn = i; swap(a[1], a[mn]), tmp[l = 1] = a[1], sort(a + 2, a + len + 1, Cmp); for (i = 2; i <= len; ++i) { while (l > 1 && (a[i] - tmp[l - 1]) * (tmp[l] - tmp[l - 1]) >= 0) --l; tmp[++l] = a[i]; } for (i = 1; i <= l; ++i) a[i] = tmp[i]; len = l;}int n, m, q, len;Point2D a[maxn], b[maxn], c[maxn], p;inline void Minkowski() { int i, j; c[len = 1] = a[1] + b[1], a[0] = a[1], b[0] = b[1]; for (i = 1; i < n; ++i) a[i] = a[i + 1] - a[i]; for (i = 1; i < m; ++i) b[i] = b[i + 1] - b[i]; a[n] = a[0] - a[n], b[m] = b[0] - b[m]; for (i = j = 1; i <= n || j <= m; ) if (j > m || (i <= n && a[i] * b[j] >= 0)) ++len, c[len] = c[len - 1] + a[i++]; else ++len, c[len] = c[len - 1] + b[j++];}inline int Query() { int l, r, mid, cur = 2; p = p - c[1]; if (c[len] * p > 0 || p * c[2] > 0) return 0; l = 2, r = len - 1; while (l <= r) { mid = (l + r) >> 1; if (c[mid] * p > 0) l = mid + 1, cur = mid; else r = mid - 1; } return (p - c[cur]) * (c[cur + 1] - c[cur]) <= 0;}int main() { int i; scanf("%d%d%d", &n, &m, &q); for (i = 1; i <= n; ++i) scanf("%lf%lf", &a[i].x, &a[i].y); for (i = 1; i <= m; ++i) scanf("%lf%lf", &b[i].x, &b[i].y), b[i] = b[i] * -1; Graham(a, n), Graham(b, m), Minkowski(), Graham(c, len); for (i = 2; i <= len; ++i) c[i] = c[i] - c[1]; for (i = 1; i <= q; ++i) scanf("%lf%lf", &p.x, &p.y), printf("%d\n", Query()); return 0;}